Improvements of Object Detection Using Boosted Histograms
نویسنده
چکیده
We present a method for object detection that combines AdaBoost learning with local histogram features. On the side of learning we improve the performance by designing a weak learner for multi-valued features based on Weighted Fisher Linear Discriminant. Evaluation on the recent benchmark for object detection confirms the superior performance of our method compared to the state-of-the-art. In particular, using a single set of parameters our approach outperforms allmethods reported in [5] for 7 out of 8 detection tasks and four object classes.
منابع مشابه
Improving object detection with boosted histograms
We address the problem of visual object class recognition and localization in natural images. Building upon recent progress in the field we show how histogram-based image descriptors can be combined with a boosting classifier to provide a state of the art object detector. Among the improvements we introduce a weak learner for multi-valued histogram features and show how to overcome problems of ...
متن کاملLocal Boosted Features for Pedestrian Detection
The present paper addresses pedestrian detection using local boosted features that are learned from a small set of training images. Our contribution is to use two boosting steps. The first one learns discriminant local features corresponding to pedestrian parts and the second one selects and combines these boosted features into a robust class classifier. In contrast of other works, our features...
متن کاملEmpirical Study of Boosted Weak Classifier in Object Detection Problem
In this paper, we study the use of boosted weak classifiers selected with AdaBoost algorithm in object detection. Our work is motivated by the good performance of AdaBoost in selecting discriminative features and the effectiveness of Classification and Regression Tree (CART) compared with other classification methods. First, we study the cascaded structure of the boosted weak classifier detecto...
متن کاملContours Extraction Using Line Detection and Zernike Moment
Most of the contour detection methods suffers from some drawbacks such as noise, occlusion of objects, shifting, scaling and rotation of objects in image which they suppress the recognition accuracy. To solve the problem, this paper utilizes Zernike Moment (ZM) and Pseudo Zernike Moment (PZM) to extract object contour features in all situations such as rotation, scaling and shifting of object i...
متن کاملEffect of Histogram Equalization in Face Detection Using Spatial Histogram Features
Many information of an object can simultaneously be conserved by histogram based features. Because of the different intensities of pixels and different lighting conditions in an image, histograms which are employed for extracting features are better to be first equalized. In this paper, the effect of equalization over the histograms used for feature extraction is studied. Experimental results o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006